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Abstract

Host response to influenza is highly variable, suggesting a potential role of host genetic variation.
To investigate the host genetics of severe influenza in a targeted fashion, 32 single nucleotide
polymorphisms (SNPs) within viral immune response genes were evaluated for association with
seasonal influenza hospitalization in an adult study population with European ancestry. SNP allele
and genotype frequencies were compared between hospitalized influenza patients (cases) and
population controls in a case-control study that included a discovery group (26 cases and 993
controls) and two independent, validation groups (one with 84 cases and 4,076 controls; the other
with 128 cases and 9,187 controls). Cases and controls had similar allele frequencies for variant
rs12252 in interferon-inducible transmembrane protein 3 (/F/TM3) (P> 0.05), and the study did
not replicate the previously reported association of rs12252 with hospitalized influenza. In the
discovery group, the preliminary finding of an association with a nonsense polymorphism
(rs8072510) within the schlafen family member 13 (SFLN13) gene (P=0.0099) was not
confirmed in either validation group. Neither rs12252 nor rs8072510 showed an association
according to the presence of clinical risk factors for influenza complications (P> 0.05), suggesting
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that these factors did not modify associations between the SNPs and hospitalized influenza. No
other SNPs showed a statistically significant association with hospitalized influenza. Further
research is needed to identify genetic factors involved in host response to seasonal influenza
infection and to assess whether rs12252, a low-frequency variant in Europeans, contributes to
influenza severity in populations with European ancestry.
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INTRODUCTION

Human influenza infections are common, and outcomes range from mild or asymptomatic
infection to life-threatening illness. Both animal and human studies suggest that host genetic
variation is a contributor to influenza infection severity,1=3 and several human studies have
investigated a potentially functional single nucleotide polymorphism (SNP), rs12252,
located at a predicted splice acceptor site in interferon-inducible transmembrane protein 3
(/IFITM3), an anti-viral effector that mediates the host innate immune response to influenza
infection.*=" The minor CC genotype of rs12252 was associated with hospitalized influenza
in patients of European ancestry and with severe influenza in a Han Chinese study
population.3 8 Further, the CC genotype was associated with severe clinical infection by
avian-origin H7N9 influenza virus.® However, three other studies were unable to confirm the
association between the CC genotype and severe influenza.10-12

Knowledge of host genetic variants that are associated with influenza severity could be
useful for identifying subpopulations at higher risk for severe influenza infection and might
also yield insight into molecular mechanisms that underlie aberrant response to influenza
infection. Because the role of host genetics as a modulator of influenza illness severity is
understudied and evidence from animal studies suggests that host susceptibility to influenza
is not controlled by a single genetic locus,3 this study sought to evaluate a set of candidate
SNPs in genes involved in immune response to viral infection, including /F/TM3rs12252,
for association with severe (hospitalized) seasonal influenza. It also attempted to validate the
results of hospitalized influenza analyses using independent study samples.

MATERIALS AND METHODS

Study subjects

The study included three groups of subjects: a discovery group and two validation groups.
For the discovery group, samples and data were obtained from subjects who had participated
in two unrelated studies at Marshfield Clinic, Wisconsin, USA. Subject selection began with
a cohort of 5,368 adults with acute respiratory illness who had been tested for influenza in
seasonal studies of influenza vaccine effectiveness from 2004—-05 through 2011-12,
including the 2009 pandemic.14-18 Of this cohort, 2,294 (42.7%) individuals had
independently provided DNA for future research as part of the Personalized Medicine
Research Project (PMRP), a population-based bio-bank of about 20,000 adults
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(approximately 98% of European ancestry) from central Wisconsin, USA.1° This provided
an opportunity to investigate the association of influenza-related hospital admission with
specific SNPs in an ethnically homogeneous, community population.

Of 2,294 subjects, 500 (21.8%) had a nasopharyngeal swab that tested positive for influenza
using real-time reverse transcription polymerase chain reaction (rRT-PCR) to detect the
genes encoding for the matrix protein (M1) of influenza A virus and the non-structural
protein 1 (NS1) of influenza B virus. Of the 500 patients with laboratory-confirmed
influenza, 26 (5.2 %) were hospitalized within 14 days after illness onset, 24 (4.8%) were
seen at the Emergency Department within 14 days of influenza infection but were not
hospitalized, and the remaining 450 (90.0%) were outpatients. Hospitalization was used as
an indicator of severe influenza infection in this study, and the discovery group sample
consisted of the 26 patients hospitalized for seasonal influenza (cases) and a random sample
of 993 PMRP participants (controls) (Fig. 1).

To confirm associations observed in the discovery group, two validation groups were used
(Fig. 1). The first was an independent group of 84 cases and 4,076 controls from the PMRP.
The second consisted of 128 cases and 9,187 controls (all non-Hispanic white adults) from
the Vanderbilt University Medical Center’s BioVU bio-bank resource.2? Validation group
cases were subjects whose medical record data indicated a positive laboratory test for
influenza A or B (mostly between the years 2001 and 2015) and hospitalization within 14
days after the laboratory test. The approach to case identification was different for the
discovery and validation groups. In the discovery group, cases were patients with acute
respiratory infection who had been actively recruited in an outpatient setting into studies of
influenza vaccine effectiveness based on self-report of the presence and duration of
respiratory symptoms. By contrast, in the validation groups, cases were identified as a result
of having undergone diagnostic testing for influenza at or before hospital admission, based
on clinician orders. Therefore, cases in the validation groups may have had more chronic
illnesses compared with cases in the discovery group. Validation group controls were
subjects who did not have a positive laboratory test for influenza documented in their
medical records and who had genome-wide SNP genotype data available due to participation
of the PMRP and BioVU bio-banks in the Electronic Medical Records and Genomics
(eMERGE) network,2! a consortium that uses genomic data linked to electronic medical
records to study personalized medicine.

All PMRP subjects gave informed consent at enrollment in PMRP for future use of their
medical record data and DNA samples in research studies. The Vanderbilt BioVU resource
operates as hon-human subjects research according to the provisions of the Code of Federal
Regulations 45, part 46.20 This study was approved by the Marshfield Clinic Institutional
Review Board.

Data collection

For cases in the discovery group, hospital discharge summaries were reviewed for all
hospital admissions to confirm that acute influenza infection was a contributing factor. A
review of hospital discharge summaries was not performed for cases in the two validation
groups. However, among the 84 cases in the PMRP validation group, 71 (84.5%) were
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hospitalized within 24-48 hours, and 83 (98.8%) were hospitalized within eight days, after
testing positive for influenza. Data on time to hospital admission were available for 122 of
the 128 Vanderbilt cases, and the corresponding numbers of subjects were 117 (95.9%) and
118 (96.7%). Therefore, it was considered likely that the influenza infection contributed to
the hospitalization of cases in the validation groups. For all cases in the discovery and
validation groups, comorbid conditions (listed in Table S1) that were present within one year
before the influenza diagnosis, mean body mass index (BMI), and use of
immunosuppressive medications within six months before the influenza diagnosis were
obtained from the electronic medical record. For comorbidities, a timeframe of one year
before the influenza diagnosis was chosen to identify new or existing, unresolved, chronic
conditions that could influence the risk of influenza complications. Mean BMI was
calculated from weight and height measurements obtained during the one-year period before
influenza diagnosis. For cases from the PMRP, receipt of an influenza vaccination within six
months before the influenza diagnosis was determined using a validated immunization
registry.22

SNP selection

Genotyping

Three main criteria were used to select 51 SNPs located in or near genes that are thought to
be involved in host response to viral infection (references listed in Table S2): (1) SNPs that
are putative expression quantitative trait loci (eQTL) based on a statistically significant (P <
0.01) Spearman correlation coefficient between SNP genotype and mRNA expression in
lymphoblastoid cell lines from the HapMap population with Northern European ancestry
(HapMap CEU);23 (2) putative functional nonsense and missense SNPs; and (3) tagging
SNPs for human leukocyte antigen alleles. While designing the multiplexed genotyping
assay, 19 SNPs were removed from the assay design to improve the predicted performance
of the assay, leaving 32 SNPs for genotyping.

In the discovery group, 30 SNPs were genotyped using a multiplexed assay on the
MassARRAY iPLEX SNP genotyping system (Agena Bioscience, San Diego, California,
USA) and two SNPs (rs12252 and rs2476601) using TagMan assays (ThermoFisher
Scientific, Grand Island, New York, USA). The sequences of primers used for genotyping
are listed in Table S3. Primers for the rs12252 and rs2476601 TagMan assays were custom-
designed and pre-designed, respectively. The rs12252 TagMan assay was tested by Sanger
sequencing with the use of previously published primers.8 Five HapMap samples (NA07357
T/T, NA11830 T/T, NA11831 C/T, NA12763 C/T, and NA12873 C/T) and a subset of 12
samples (1 C/C, 6 C/T, 5 T/T) from subjects in the discovery group were sequenced, and the
TagMan and Sanger sequencing results were 100% concordant. Genotyping of the 32 SNPs
was attempted, and successfully performed, for all subjects in the discovery group. The
genotype call rate in this group was 99.99%: only one genotype for one study subject was
not called.

Two SNPs were genotyped in the PMRP validation group: /F/TM3rs12252 and SFLN13
rs8072510 (Fig. 1). The aforementioned TagMan assay with custom-designed primers was
used to genotype rs12252 in all 84 cases and in 301 controls in the PMRP validation group.
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All 84 cases were also genotyped for rs8072510 using a TagMan assay with pre-designed
primers (Table S3). For the two assays, genotype concordance was 100% when replicate
samples for 10% of subjects were genotyped, and the genotype call rate was 100%. In the
PMRP validation group, genotype data for rs8072510 were available for 3,775 controls that
had been genotyped previously using the Illumina Human660 W-Quadvl A genotyping
platform.24

In the Vanderbilt validation group, subjects had been genotyped previously for rs12252 and
rs8072510 on one of four lllumina platforms: Human660W-Quadvl A, HumanOmnil-
Quad, HumanOmni5-Quad, and Human1M-Duo.24 25 SNP rs8072510 was genotyped in all
128 cases and 9,187 controls; SNP rs12252 was genotyped in 70 cases and 8,719 controls

(Fig. 1).

Statistical analysis

To examine differences between hospitalized cases and other patients with influenza in the
PMREP, selected characteristics of hospitalized cases in the discovery and validation groups
were compared to characteristics of the 450 outpatients with laboratory-confirmed influenza
in the discovery group cohort. Statistical tests employed were the Wilcoxon rank sum test
for continuous variables and Fisher’s exact test for categorical variables. The comparisons
were made using SAS software (version 9.3; SAS Institute, Cary, North Carolina, USA).

Genotype association analyses were performed using PLINK.26 For each SNP, Weir’s exact
test was used to assess Hardy-Weinberg equilibrium in cases and controls, separately, in the
discovery and validation groups. To test for SNP associations with hospitalized influenza,
allele and genotype frequency association tests were performed using Fisher’s exact test. For
IFITM3rs12252, previously reported to be associated with hospitalized influenza, and for
any other SNPs showing associations in the discovery group, tests for associations with
hospitalized influenza were also performed in the PMRP validation group, the combined
PMRP discovery and validation groups, and the Vanderbilt validation group. To minimize
confounding, analyses of the combined group and the Vanderbilt validation group were
repeated after excluding hospitalized cases with any risk factors that increase the risk of
influenza complications:2” = 65 years of age, morbid obesity (BMI = 40 kg/m?), diagnosis
of at least one comorbid condition (listed in Table S1) within one year before influenza
diagnosis, and use of immunosuppressive medications within six months before influenza
diagnosis. SNP association analyses were corrected for testing of 32 SNPs using the
Bonferroni method, and a ~A-value < 0.0015 (0.05/32) was considered statistically significant.

RESULTS

Hospitalized influenza cases in the PMRP discovery and validation groups were older, had a
higher prevalence of comorbid conditions and immunosuppressive medication use, and were
more likely to have received an influenza vaccine during the prior six months compared with
outpatients who had influenza (Table I). More than one-third of hospitalized cases in the
discovery group and of outpatient influenza infections occurred during the 2007-08 season
dominated by influenza A (H3NZ2), compared with only 12% of hospitalized cases in the
validation group. Influenza subtype was not collected consistently during the study period
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and many subjects had missing data for subtype. One hospitalized case in the discovery
group, five in the validation group, and 70 outpatients were infected with pandemic
H1N1pdm09. A comparison of the proportions of the non-missing subtypes among the three
groups showed no statistically significant differences. The characteristics of cases in the
Vanderbilt validation group are described in Table S4. Compared with hospitalized cases in
the PMRP discovery and validation groups, a smaller percentage of Vanderbilt cases were =
65 years and a larger percentage were males or had used immunosuppressive medications.
Mean BMI and the percentage of subjects who were morbidly obese or had comorbid
conditions were similar between Vanderbilt and PMRP cases. Also, similar to PMRP cases,
most Vanderbilt cases were infected with influenza A virus. No data were available on
influenza subtype for hospitalized cases in the Vanderbilt validation group. Although case
ascertainment was different in the discovery and validation groups, the proportion of cases
with chronic diseases was not larger in the two validation groups than in the discovery
group: approximately 50% of cases in all three groups had comorbid conditions (Table | and
Table S4).

Of the 32 SNPs genotyped in the discovery group, one (interferon regulatory factor 2 (/RF2)
rs59219184) was found to be monomorphic as no subject carried the minor allele. After
excluding this SNP, 31 SNPs remained for analysis (Table I1). All 31 SNPs were consistent
with Hardy-Weinberg equilibrium (£>0.01) in cases and controls in the discovery group.
IFITM3rs12252 and SFLN13rs8072510 were also in Hardy-Weinberg equilibrium (P>
0.01) in the cases and controls genotyped for these SNPs in the PMRP and Vanderbilt
validation groups.

In tests of allele frequency, two SNPs were associated with hospitalized influenza at the
nominal P-value threshold of 0.05: schlafen family member 13 (SLFN13) rs8072510 and
interferon alpha and beta receptor subunit 2 (/FNARZ2) rs1131668 (Table Il and Table S5).
The SLFN13rs8072510 minor T allele had the strongest association with increased risk of
hospitalized influenza in the discovery group (allelic P-value = 0.0099 for comparison with
PMRP controls; Table S5) but the P-value was not below the threshold value of 0.0015 for
statistical significance based on Bonferroni adjustment. Because rs8072510 had the lowest
allelic P-value of all the SNPs tested, associations with genotype frequency and with
dominant and recessive genetic models for rs8072510 were also examined in the discovery
group. Statistically significant associations were observed with genotype frequency and the
recessive model (when PMRP controls were used as the comparison group in Table S5),
suggesting that the rs8072510 minor TT genotype was associated with hospitalized
influenza. However, no association between rs8072510 and hospitalized influenza was
observed in the PMRP validation group, the combined PMRP discovery and validation
groups, or the Vanderbilt validation group (Table S6). In addition, none of the other SNPs
evaluated in this study showed associations that remained statistically significant after
Bonferroni adjustment (Table II).

Because no associations were observed, a post-hoc analysis of the PMRP discovery group
was performed to calculate the minor allele frequencies in hospitalized influenza cases that
would show a statistically significant difference when compared with the observed minor
allele frequencies in controls (Table S7). The ratio of the calculated minor allele frequencies
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in cases to the observed minor allele frequencies in controls was considered as the
magnitude of the fold-change in minor allele frequency that would produce a statistically
significant association, assuming alpha = 0.0015 and 80% power. For the 31 SNPs, the ratio
ranged from 1.9 to 60.0 with a median value of 2.8. This range indicated that a modest to
large fold-change in minor allele frequency was required, depending on the SNP, for a
statistically significant difference to be detected. The ratio of the observed minor allele
frequencies in cases to that in controls ranged from 0.7 to 2.2 with a median value of 1.0
(Table S7), suggesting that no associations were detected in Table Il because the minor allele
frequencies of most of the 31 SNPs were similar in cases and controls.

For /FITM3rs12252, the frequency of the minor C allele was zero in hospitalized cases in
the discovery group, 0.036 in controls in the discovery group, and 0.041 in the 1000
Genomes?® European ancestry population (Table I1). There was no statistically significant
difference in the C allele frequency when hospitalized cases were compared with either
controls (P=0.26) or the 1000 Genomes European ancestry population (£ = 0.26), using
Fisher’s exact test (Table S8). One hospitalized case in the PMRP validation group and four
controls but no cases in the Vanderbilt validation group had the minor CC genotype (Table
I11). No statistically significant associations between rs12252 and hospitalization for
seasonal influenza were observed in analyses involving the two validation groups, including
when subjects at risk for influenza complications were excluded (Table 111).

To determine whether risk factors for influenza complications modified the associations
between the SNPs and hospitalized influenza, gene-environment interactions were
investigated by testing for associations within risk factor categories (Table V). Age is an
important risk factor for influenza hospitalization;2° therefore, associations were examined
separately for cases < 65 years and = 65 years at diagnosis. Associations were also tested
according to the presence or absence of other clinical risk factors for influenza
complications. These exploratory analyses, performed for rs12252 (Table 1V) and rs8072510
(Table S9), did not detect differences in SNP associations with hospitalized influenza by risk
factor categories, based on the P-value threshold of 0.0015.

DISCUSSION

This pilot screening study to evaluate the association between hospitalized influenza and 32
SNPs in genes postulated to play a role in host response to seasonal influenza infection did
not show statistically significant results for any of the interrogated SNPs, including /FITM3
rs12252 previously reported® 8: 9 to be associated with hospitalized influenza. One reason
could be low power to detect associations due to the small number of hospitalized cases in
the discovery group; the sample size of this group was limited by the number of individuals
who both contributed DNA to the PMRP and were enrolled and tested for influenza during
an acute respiratory illness. The PMRP and Vanderbilt validation groups each had a larger
sample size (= 70 cases and = 1,200 controls) than the discovery group but no association
between hospitalized influenza and /F/TM3rs12252 was observed in analyses of these
groups. In the combined PMRP discovery and validation groups, the frequency of the
rs12252 minor C allele in the 110 cases would need to be 0.131 to achieve at least 80%
power to observe a difference in C allele frequency between cases and controls at alpha =
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0.0015, given that the C allele frequency in the 1,294 controls was 0.035. However, the C
allele frequency was similar in the cases and controls. Further, the rs12252 homozygous risk
genotype was found in only one hospitalized case in the PMRP validation group and was
absent among hospitalized cases in the discovery group and the Vanderbilt validation group.
Therefore, similar to previous reportsl%-12 that observed no association between rs12252
and hospitalized influenza, the rs12252 minor C allele and homozygous risk genotype were
present at low frequency in study populations with European ancestry.

IFITM3restricts infection by viruses that exploit endocytosis pathways to enter host cells
(such as the influenza virus) by becoming localized to endocytic vesicles and preventing
fusion of the virus with endosomal cell membranes, thereby inhibiting release of virions into
the host cell cytosol.> 7 Obstructing the endocytosis of IFITM3 protein reduces its ability to
inhibit influenza virus infection.3% The rs12252 minor C allele creates a predicted splice site
that would generate a putative, truncated /F/TM3 transcript lacking the first 21 N-terminal
amino acids (A1-21 variant),3 including the Y20 amino acid, located in a motif that is
recognized and bound by the AP-2 complex leading to trafficking of IFITM3 protein to
endosomes and lysosomes.30 The A1-21 variant protein was shown to accumulate at the
plasma membrane rather than at endosomal membranes and to have reduced activity to
restrict influenza virus infection Jn vitro.31 32 Mutation or deletion of Y20 resulted in
similar effects.30: 31, 33,34 | ymphoblastoid cells and peripheral blood mononuclear cells
from individuals with the rs12252 minor CC genotype did not express the A1-21 variant
protein;3 35 therefore, the relevance of the A1-21 variant protein to the level of severity of
influenza infection in humans is unclear. At present, it is unknown whether the predicted
splice site is used for splicing /in vivo, and experimental studies of splice site usage are
needed to determine whether the rs12252 minor C allele has a functional effect that impedes
the ability of /F/TM3to restrict influenza virus infection.

A conservative approach was applied to correct for multiple testing in this study. The
Bonferroni method was used when performing allele and genotype association tests for 32
SNPs to control for the probability of rejecting the null hypothesis at alpha = 0.05, given that
the null hypothesis is true. Because this was a screening study, concern about generating
false positive results prompted use of stringent methods to reduce the chances of false
positive associations.

Hospital admission for influenza was used as a proxy for severe influenza infection in this
study; however, multiple non-genetic factors increase the risk for hospital admission,
including chronic disease.36 The study accounted for some of these factors in statistical
analyses, but it was not possible to adjust for all potential confounders due to the small
sample size. In addition, the study was unable to account for protection from pre-existing
neutralizing antibodies3” and the virulence of different influenza viral strains.3® Influenza-
related hospitalizations and deaths are greater during seasons in which H3NZ2 is the
dominant subtype38 but this study could not evaluate the effect of influenza subtype on the
associations between the SNPs and hospitalized influenza because it was limited by missing
data on subtype for many subjects. Evidence that influenza subtype may not modify
associations between host genetic variants and hospitalized influenza includes the
observation that the same subtype infects both hospitalized cases and outpatients in any
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given season3? and the findings of a study in a Chinese population that associations between
influenza-related mortality and two SNPs (rs12252 in /F/TM3and rs5743313 in the toll-like
receptor 3 gene) were consistent for the two subtypes (HIN1pdm09 and H7N9) examined.*0
An important limitation is that genetics may make only a small contribution to influenza
severity in older adults. In the PMRP discovery and validation groups, age at influenza
diagnosis was = 65 years for > 60% of cases. Chronic disease, smoking, frailty,
immunosenescence, and circulating levels of antibodies against influenza may be far more
important in this age group. The analyses performed for low-risk cases in this study
accounted for some of these factors, but the low-risk groups were small in size and no data
were available on influenza antibody titers. If host genetics have a significant impact on risk
of influenza-related hospitalization, it would most likely be observed in children who have a
more limited lifetime exposure to influenza and fewer comorbid conditions. Notably, a
recent study in a pediatric population observed no association between /F/TM3rs12252 and
severe influenza infection,3° similar to this study’s findings for adults. Another limitation
was the inability to distinguish whether hospital admission within 14 days after illness onset
was a direct consequence of the primary viral infection or was due to a secondary bacterial
infection. Secondary bacterial pneumonia was considered to be a complication of the
primary influenza infection and to be associated with the severity of the primary infection.
Therefore, regardless of whether hospital admission was because of the primary influenza
infection or a secondary infection, hospitalization was considered as an indicator of severe
influenza.

In conclusion, this study examined a wider selection of genetic variants for association with
severe influenza in humans than previous studies, but no association was observed between
the 32 SNPs in genes involved in immune defense against viral infection, including /F/ITM3
rs12252, and hospitalization for seasonal influenza. More research is necessary to investigate
the independent contributions of non-genetic and genetic factors to influenza severity, and
one possible approach is to focus on pediatric populations because children often lack the
clinical (non-genetic) risk factors that increase the risk of influenza-related complications
and hospitalization. Identifying host genetic factors involved in the pathogenesis of influenza
severity is important because these factors are potential molecular targets for therapies
aimed at mitigating influenza severity, and by offering the therapies to patients most likely to
benefit from them (patients who carry the genetic factors), clinical care for severe influenza
may be improved through personalized medicine in future. The immune response to
influenza is complex and affected by multiple factors such as immunosenescence, host
fragility, prior vaccination and infection, virus subtype and virulence, and host genetics. A
systems biology approach may be helpful for understanding how these factors interact to
determine influenza severity and outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Characteristics of hospitalized and outpatient cases with influenza in the Personalized Medicine Research

Project?

Characteristic

Hospitalized cases from
discovery group (n = 26)

Hospitalized cases from
validation group (n = 84)

Outpatient influenza
from discovery cohort (n
= 450)

Age at influenza diagnosis (years), mean + SD

Age = 65 years at influenza diagnosis, n (%)

Males, n (%)

Body mass index (kg/m?), mean + SD¢

Obesity (body mass index = 30 kg/m?), n (%)¢
Morbid obesity (body mass index > 40 kg/m?), n

()¢

Co-morbid conditions, n (%)d

Immunosuppressive drug use, n (%)€

Influenza vaccine, n (%)9
Influenza type, n (%)
A
B
Aand B
Influenza subtype, n (%)
A(H3N2)

A(HIN1pdmo09)”?
A(HIN1)
B(Yamagata)
B(Victoria)
Unknown
Influenza season, n (%)
2001 - 2002
2002 - 2003
2003 - 2004
2004 - 2005
2005 - 2006
2006 — 2007
2007 - 2008
2008 - 2009
2009 - 2010
2010 - 2011
2011 - 2012
2012 - 2013
2013 - 2014
2014 - 2015

65+ 160

16 (61.5)0
11 (42.3)
289472

6(37.5)

1(6.3)

14 (53.9)0
31157
18 (69.2)7

19 (73.1)
7(26.9)
0(0.0)

13 (50.0)
1(3.8)
2(1.7)
1(3.8)
1(3.8)

8 (30.8)

0(0.0)
0(0.0)
0(0.0)
6(23.1)
1(3.8)
2(7.7)
10 (38.5)
6(23.1)
0(0.0)
1(3.8)
0(0.0)
0(0.0)
0(0.0)
0(0.0)

714170

57 (67.9)0
31(36.9)
315+9.1

41 (51.9)

7(8.9)

40 (47.6)0
8 (9.5

52 (61.9)F

72 (85.7)
12 (14.3)
0(0.0)

6(7.1)
5 (6.0)
0(0.0)
2 (2.4)
0(0.0)
71 (84.5)

4(4.8)
1(12)
7(8.3)
7(8.3)
5 (6.0)
1(1.2)
10 (11.9)
1(12)
4(4.8)
2(2.4)
3(36)
24.(28.6)
11 (13.1)
4(4.8)

49£16
89 (19.8)

170 (37.8)
31.4+7.3

156 (50.5)

39 (12.6)

59 (13.1)
9(2.0)

214 (47.6)

347 (77.1)
100 (22.2)
3(0.7)

205 (45.5)
70 (15.6)

29 (6.4)
30(6.7)
9(2.0)
107 (23.8)

0(0.0)
0(0.0)
0(0.0)
53 (11.8)
18 (4.0)
16 (3.6)
194 (43.1)
95 (21.1)
3(0.7)
38 (8.4)
33(7.3)
0(0.0)
0(0.0)
0(0.0)
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a . - . . . . . . .
Comparison of each group of hospitalized cases with the outpatient group using Wilcoxon rank sum test for continuous variables and Fisher’s
exact test for categorical variables.

bP< 0.0001.

CBody mass index averaged from multiple weight and height measurements obtained during the one year period before influenza diagnosis (10
hospitalized cases in the discovery group, 5 hospitalized cases in the validation group, and 141 outpatients with influenza had missing data for body
mass index).

dDiagnoses of co-morbid conditions within one year before influenza diagnosis (conditions are listed in Table S1).

61Medica’(ion use within the six month period before influenza diagnosis.

fP< 0.05.

glnfluenza vaccination in six-month period before influenza diagnosis.

hPandemic H1N1 influenza subtype.
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